Соколова Татьяна Владимировна

Спектрально-люминесцентные и фотохимические свойства некоторых метилфенолов и дигидрохинолинов в разных средах

02.00.04 – физическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук Работа выполнена на кафедре физической и коллоидной химии химического факультета и в лаборатории фотофизики и фотохимии молекул физического факультета Государственного образовательного учреждения высшего профессионального образования «Томский государственный университет»

Научный руководитель	кандидат физико-математических наук
	Чайковская Ольга Николаевна
Официальные оппоненты	доктор химических наук
	Полещук Олег Хемович
	кандидат химических наук
	Захаренко Валерий Семенович
Ведущая организация Научно-иссл органической химии при Ростовском гос	едовательский институт физической и сударственном университете
	2006 г. в 14.00 час. в ауд. 212 на заседании Томском государственном университете по факс: (3822) 52-98-95.
С диссертацией можно ознакомити посударственного университета по адрес	ься в научной библиотеке Томского у: 634050, г. Томск, пр. Ленина, 32.
Автореферат разослан «»	2006 г.
Ученый секретарь диссертационного сов	вета
доктор химических наук	Водянкина О. В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Фотохимическая активация эффективный способ воздействия на вещество, позволяющее решать не только фундаментальные, но И различные практические задачи. Изучение фотохимического разложения органических веществ вызывает все больший интерес исследователей. Это обусловлено двумя факторами. Во-первых, результаты таких исследований важны для дальнейшего развития представлений о взаимодействии электромагнитного излучения с веществом и о механизме последующих химических превращений не только в основном, но и в возбужденных электронных состояниях. Во-вторых, такие результаты составляют основу для выработки подходов к управлению фотохимическими реакциями и их интенсификации.

Сложность фотопревращений, происходящих ультрафиолетового (УФ) излучения, в среде с загрязняющими примесями, приводит к настоятельной необходимости фундаментальных фотохимических исследований. К наиболее распространенным загрязнителям окружающей среды во всем мире относятся летучие низкомолекулярные фенолы, например, метилфенолы, ксиленолы, тимол и др. Известно, что фотолиз органических молекул в жидких средах зависит от различных добавок и рН среды. Для хлорфенола установлено, что формы принимают участие в фотопревращениях в качестве промежуточных продуктов. Многоядерные ароматические молекулы, например, дигидрохинолины способны образовывать водородные связи с водой и спиртами, кроме того, могут так же, как фенолы, проявлять кислотные свойства и выступать в качестве доноров протонов. Следовательно, можно ожидать сильного влияния среды на реакцию фотолиза.

К сожалению, в мировой литературе отсутствуют данные о влиянии длины волны возбуждающего света на фотопроцессы в органических экотоксикантах. Не исследованы эффекты замещения в первичной и последующих стадиях фотохимических процессов. Практически нет работ по фундаментальному исследованию фотопроцессов, происходящих в экотоксикантах при использовании новых перспективных источников возбуждения — эксиламп. Для эксиламп характерна высокая эффективность преобразования введенной в газовую среду энергии в ультрафиолетовое излучение, причем более 80% от общей мощности

излучения эксилампы сосредоточено в относительно узкой (несколько нм на полувысоте) спектральной полосе соответствующей молекулы, что позволяет селективно возбуждать фотодиссоционное состояние.

Исследование элементарных темновых и фотохимических процессов, происходящих с участием этих соединений, и влияния на них среды является весьма актуальным с точки зрения фундаментальных фотохимических исследований.

<u>Целью работы</u> является установление зависимости эффективности и направления реакций фотолиза метилфенолов и дигидрохинолинов от структуры изучаемых соединений и природы среды, а также влияния на эти процессы длины волны возбуждающего света.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) исследовать спектрально-люминесцентные свойства нейтральных и ионных форм 2-метилфенола и 4-метилфенола (2-МФ и 4-МФ) и 2-амино-4-метилфенола (2-А-4-МФ) и их изменение в мицеллярных средах;
- 2) определить константы кислотно-основного равновесия (р K_a) **метилфенолов** (**МФ**) в основном состоянии и их изменение при возбуждении;
- 3) изучить изменение спектрально-люминесцентных свойств **МФ** в средах с различным значением рН при облучении светом различных источников ртутной лампой и эксилампами;
- 4) исследовать спектрально-люминесцентные свойства 6-окси-2,2,4-триметил-1,2-дигидрохинолина (6-ОН-ДГХ) и 8-окси-2,2,4-триметил-1,2-дигидрохинолина (8-ОН-ДГХ) в протонных и апротонных растворителях и их изменение при облучении ртутной лампой, определить состав продуктов и механизм фотолиза;
- 5) исследовать спектральные и кинетические характеристики промежуточных интермедиатов, генерируемых при фотолизе дигидрохинолинов (ДГХ) в различных средах.

<u>Научная новизна работы.</u> Получены спектрально-люминесцентные характеристики для катионных и анионных форм **2-МФ**, **4-МФ** и **2-А-4-МФ**, что позволило определить значения р K_a в возбужденном состоянии.

Впервые получены флуоресцентные характеристики растворов $\mathbf{M}\mathbf{\Phi}$ до и

после облучения эксилампами и лазерами. Показано, что эффективность фотолиза $\mathbf{M}\mathbf{\Phi}$ зависит не только от pH раствора, но и от длины волны возбуждающего излучения и положения заместителя в кольце. Эффективность разложения $\mathbf{M}\mathbf{\Phi}$ в нейтральной среде выше под действием УФ-излучения KrCl-лампы ($\lambda_{uзл} = 222$ нм).

Проведено исследование фотохимических процессов, происходящих с участием гидроксизамещенных ДГХ, которое включает в себя выделение и анализ стабильных конечных продуктов. Установлено, что в метиловом спирте основным процессом как для 6-ОН-ДГХ, так и для 8-ОН-ДГХ является фотоиндуцированное присоединение молекулы растворителя к двойной связи ДГХ. Присоединение молекулы воды к двойной связи при облучении наблюдается лишь в случае 8-ОН-ДГХ. Константы скорости реакций промежуточных частиц существенно зависят от положения гидроксигруппы в ароматическом кольце и увеличиваются практически на порядок при переходе от 6-ОН-ДГХ к 8-ОН-ДГХ.

Практическая ценность диссертации заключается в том, что результаты работы могут быть использованы при оценке вклада фотохимических процессов в циклы превращений органических соединений в огромных объемах природных и сточных вод. Полученные результаты позволят усовершенствовать физикохимические методы отчистки городских и промышленных сточных вод, повысить выходы целевых продуктов превращения фенола и снизить выходы побочных. В настоящей работе обнаружена зависимость направления фотохимической реакции от длины волны возбуждающего света и кислотности среды. Предложено использовать KrCl лампу для фоторазложения метилфенолов в нейтральной среде, при уменьшении или увеличении pH - XeBr лампу. Для высокомолекулярных фенолов (ДГХ) найдены условия фотоиндуцированного присоединения воды и метанола при использовании широкополосного источника излучения. Полученные результаты ΜΟΓΥΤ быть рекомендованы К использованию научноисследовательских и учебных организациях, занимающихся исследованиями фоторазложения органических соединений, в т.ч. в Институте водных и экологических проблем ДВО РАН, г. Хабаровск.

Защищаемые положения:

1) Как протонодонорные, так и протоноакцепторные свойства **2-метилфенола** увеличиваются при возбуждении по сравнению с **4-метилфенолом**. Различие

- образования катионной формы **2-метилфенола** и **4-метилфенола** связано с инверсией электронных уровней в схеме электронно-возбужденных состояний.
- 2) Эффективность разложения метилфенолов в нейтральной среде выше при возбуждении в S_3 состояние молекул (под действием УФ-излучения KrCl лампы). Замещение в молекуле **4-метилфенола** атома водорода в *орто*положении NH₂-группой приводит к увеличению эффективности фоторазложения, которая возрастает в ряду: **2-метилфенол** < **4-метилфенол** < **2-амино-4-метилфенол**.
- 3) Механизм фотоиндуцированного присоединения молекул воды или спирта к гидроксизамещенным дигидрохинолинам заключается в присоединении молекулы этого растворителя к двойной связи ДГХ.

Работа выполнялась в рамках Гранта Минобразования РФ № 49 в области охраны окружающей среды и экологии человека; Грантов Минобразования РФ № Е 00-12.0-235 и № E 02-12.2-63; Гранта АН РФ (грант № 407 VI конкурса грантов молодых ученых), программы Минобразования «Научные исследования высшей экологии и рациональному природопользованию»; Гранта школы по образованию $N_{\underline{0}}$ аспирантов Федерального агентства ПО A04-2.11-769; ведомственной программы Федерального агентства по образованию «Развитие научного потенциала Высшей школы» по разделу 3.3, проект № 34100 и Гранта Российского фонда фундаментальных исследований № 06-08-01380.

Апробация работы. Результаты исследований были представлены на II, III Международном симпозиуме «Контроль и реабилитация окружающей среды (Томск, 2000, 2002), III, VI школе-семинаре молодых ученых «Современные проблемы физики и технологии» (Томск, 2002, 2005), Российской молодежной научно-практической конференции «Получение свойства И веществ полифункциональных материалов, диагностика, технологический менеджмент» (Томск, 2003), X, XI Международном симпозиуме «Оптика атмосферы и океана. Физика атмосферы» (Томск, 2003, 2004), VI Международной конференции «Импульсные лазеры на переходах атомов и молекул» (Томск, 2003), VIII Международной конференции «Методы И приложения флуоресценции: спектроскопия, получение оптических изображений и зонды» (Прага, 2003),

Международной конференции «Современные проблемы физики и высокие технологии» (Томск, 2003), II Международной конференции «Окружающая среда и экология Сибири, Дальнего Востока и Арктики» (Томск, 2003), VI Международной конференции «Химические реакторы» (Берлин, 2003), XV Международной конференции «Фотохимические превращения и накопления солнечной энергии» (Париж, 2004), 2 Всероссийской конференция «Прикладные аспекты химии высоких энергий» (Москва, 2004), VII Русско-китайском симпозиуме «Лазерная физика и лазерные технологии» (Томск, 2004), VIII молодежной научной школеконференции по органической химии (Казань, 2005), Международном симпозиуме по активным интермедиатам и необычным молекулам (Эдинбург, 2005).

<u>Публикации.</u> Результаты исследований по диссертационной работе опубликованы в 13 работах. Из них 6 статей в рецензируемых журналах, а также материалы конференций.

<u>Структура и объем диссертации.</u> Диссертация состоит из введения, 5 глав, выводов и списка литературы. Работа изложена на 160 страницах, содержит 17 таблиц и 34 рисунка. Список цитируемой литературы включает в себя 171 наименование.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность проводимых исследований, сформулированы цели и задачи работы, указаны научная новизна и практическая значимость полученных результатов, перечислены основные положения, выносимые на защиту.

Первая глава является критическим обзором литературы по проблемам, непосредственно относящимся к теме диссертации, и состоит из 5 разделов, в которых рассмотрены общая схема фотофизических процессов в органических молекулах, влияние межмолекулярных взаимодействий на спектральные свойства органических молекул, влияние растворителя на спектрально-люминесцентые свойства молекул, использование в качестве смешанного растворителя мицеллярных систем, а также типы фотохимических реакций.

Вторая глава посвящена описанию объектов и методов исследования. Спектрально-люминесцентные свойства нейтральных и ионных форм $\mathbf{M}\mathbf{\Phi}$ и нейтральных форм гидроксизамещенных $\mathbf{Д}\mathbf{\Gamma}\mathbf{X}$ исследованы методами электронной

спектроскопии. Для интерпретации указанных свойств МФ были использованы также квантово-химические расчеты полуэмпирическим методом частичного пренебрежения дифференциальным перекрыванием (ЧПДП) со спектроскопической параметризацией 1. Метод позволяет рассчитать спектр, характеристики электронных полос, константы скоростей фотофизических процессов, распределение электронной плотности и изменение ее в возбужденном состоянии. Для учета особенностей неравномерного распределения электронной плотности в молекуле использован метод молекулярного электростатического потенциала $(M \ni C\Pi)$.

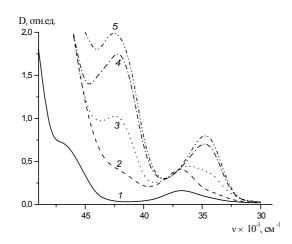
В качестве источников ультрафиолетового излучения для фотолиза ${\bf M}{m \Phi}$ были высокого давления использованы стандартная ртутная лампа (спектральный интервал 240-600 нм), KrCl-лазер ($\lambda_{\rm изл} = 222$ нм), XeCl-лазер $(\lambda_{\rm изл} = 308 \text{ нм})$ и 4-я гармоника Nd:YAG лазера $(\lambda_{\rm изл} = 266 \text{ нм})$, а также эксилампы на рабочих молекулах KrCl* ($\lambda_{\text{изл}} = 222$ нм), XeBr* ($\lambda_{\text{изл}} = 283$ нм) и XeCl* $(\lambda_{\text{изл}} = 308 \text{ нм})$. Протекание реакций фотолиза **МФ** и **ДГХ** контролировали спектрофотометрически. Стационарный фотолиз ДГХ проводили при облучении светом ртутной лампы ДРШ-1000. Спектры поглощения и кинетику образования и гибели промежуточных частиц, образующихся при фотолизе ДГХ, измеряли на установке импульсного фотолиза с временным разрешением 10 мкс. Фотолизаты ДГХ анализировали методом ЯМР ¹H на спектрометре Bruker WM-250² в DMSO-d₆ или CDCl₃. Частота спектрометра 250 МГц, развертка по частоте, спектры снимали использованием тетраметилсилана В качестве внутреннего Эффективность фоторазложения ${\bf M}{\bf \Phi}$ оценивалась фотометрическим методом³. Продукты фотолиза МФ после экстракции хлороформом исследовались хроматомасс-спектрометрическим методом⁴ на хромато-масс-спектрометре «Nermag R-10-10C».

_

¹ Метод разработан в отделе фотоники молекул Сибирского физико-технического института при Томском госуниверситете д. ф.-м. н., проф. В. Я. Артюховым.

² Анализ ЯМР ¹Н проводила ст.н.с. Левина И. И., группа ЯМР Института биохимической физики (ИБХФ) РАН, г. Москва.

³ Фотометрический анализ проводила Шелковникова Т. М., гидрохимическая лаборатория ОАО «Томскмониторинг», г. Томск.


 $^{^4}$ Хромато-масс-спектрометрический анализ проводил Кадычагов П. Б., Институт химии нефти СО РАН, г. Томск

Третья глава содержит результаты исследований спектрально-люминесцентных свойств нейтральных и ионных форм **2-МФ**, **4-МФ** и **2-А-4-МФ** в водной и водно-мицеллярной среде. Был использован набор ПАВ различной природы: анионный — додецилсульфат натрия (ДДСН), катионный — N-цетилтриметил аммония бромид (ЦТАБ) и неионный — полиоксиэтиленизооктилфенол (тритон X 100, «Loba Chemie») выше критической критической концентрации мицеллообразования.

Также были исследованы спектральные характеристики гидроксизамещенных **ДГХ** в растворителях, обладающих различными протонодонорными свойствами: дистиллированная вода, метиловый спирт (MeOH), изопропиловый спирт (PriOH) и гексан.

При добавлении H_2SO_4 (- $H_0 = 0.02 \div 8.92$) или NaOH (pH = $7.54 \div 13.45$) в водные растворы **МФ** наблюдаются обратимые изменения в спектрах поглощения и флуоресценции, отнесенные к образованию катионных или анионных форм (puc. 1).

I. отн. ед.

1,0 0,5 0,5 0,0 0,0 300 320 340 360 380 400 420 0,0

I*, отн. ед.

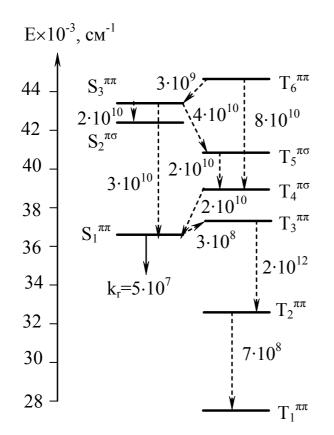

Рис. 1. Спектр поглощения 2-метилфенола $C = 5 \cdot 10^{-5}$ моль/л в воде с добавкой NaOH при рН: I - 7.08; 2 - 9.35; 3 - 10.45; 4 - 11.45; 5 - 13.45.

Рис. 2. Спектр флуоресценции (длина волны возбуждения флуоресценции $\lambda_{\text{возб}} = 280$ нм (*1-4*), $\lambda_{\text{возб}} = 270$ нм (*5*, *6*)) *4*-метилфенола $C = 5 \cdot 10^{-5}$ моль/л (*1*, *3*, *5*) и *2*-метилфенола $C = 5 \cdot 10^{-5}$ моль/л (*2*, *4*, *6*) при рН: I^* , I^*

Ионные формы $\mathbf{M}\mathbf{\Phi}$ обладают низкой флуоресцирующей способностью (рис. 2). На рис. 3 представлена рассчитанная нами энергетическая схема электронно-

возбужденных состояний **4-МФ**, где указаны наиболее вероятные процессы и их константы скорости (c^{-1}). Из результатов квантово-химического расчета следует, что эффективности процесса интеркомбинационной конверсии в ионных формах **МФ** выше на два порядка по сравнению с нейтральными формами. Квантовый выход флуоресценции нейтральных и ионных форм **2-А-4-МФ** в воде $\leq 10^{-3}$. В табл. 1 приведены значения р K_a кислотности, характеризующей эффективность отрыва

Рис. 3. Энергетическая схема электронновозбужденных состояний *4*-метилфенола.

протона OT ОН-группы, основности, определяющей вероятность присоединения протона к молекуле. Первый процесс осуществляется при значении pH = 7.75, второй – при $-H_0 = 2.41$. Как следует из таблицы, своей ПО протонодонорной способности молекула 2-МФ в основном состоянии (S_0) немного выше, чем 4-МФ. При возбуждении эта тенденция сохраняется.

Протоноакцепторные свойства выше у **4-МФ** в основном состоянии. При

возбуждении вероятность присоединения протона выше у **2-МФ**. В основном состоянии протонодонорная способность **2-А-4-МФ** выше, чем **2-МФ** или **4-МФ**.

Согласно данным квантово-химического расчета, введение метильного заместителя в молекулу фенола в основном состоянии оставляет наиболее вероятное место протонирования молекул **2-МФ** и **4-МФ** – атом кислорода ОНгруппы. Этот механизм не меняется при возбуждении в S_I состояние, несмотря на небольшое увеличение электронной плотности около атомов углерода фенильного кольца. У молекулы **2-А-4-МФ** механизм образования протонированной формы меняется. В основном состоянии наиболее вероятным местом протонирования будут атомы азота NH_2 -группы и кислорода OH-группы. При возбуждении в S_I

протоноакцепторная способность атомов азота и кислорода резко уменьшается и электронная плотность сосредотачивается над атомами углерода ароматического кольца молекулы. Следовательно, в возбужденном состоянии S_1 увеличивается вероятность возникновения протонированной формы 2-A-4-М Φ по атомам углерода фенильного кольца. Таким образом, в молекуле 2-А-4-МФ происходит электронной плотности И. как делокализация следствие, способности 2-А-4-МФ. протоноакцепторной что И подтверждается экспериментальными данными (табл. 1).

Таблица 1. Константы кислотности 2-, 4-метилфенола и 2-амино-4-метилфенола в различных электронных состояниях в водных растворах

<u>r</u>	1		
кислота	сопряженное основание	pK_a	p $K_{\rm a}$ *
4-МФ	анион 4-МФ	10.5	6.1
катион <i>4-</i> МФ	4-МФ	-4.4	1.3
2-МФ	анион 2-МФ	10.3	5.3
катион <i>2</i> -МФ	2-МФ	-4.1	0.4
2-А-4-МФ	анион 2-А-4-МФ	9.4	1.6
катион 2-А-4-МФ	2-А-4-МФ	5.9	1.9
фенол	анион фенола	9.6	4

Как ΜФ отмечено BO введении, являются распространенными экотоксикантами, поэтому в работе также были исследованы спектральнолюминесцентные свойства 2-МФ и 4-МФ в условиях, близких к реальной ситуации: при наличии в воде других техногенных загрязнителей – ПАВ различного типа. Анализ спектров поглощения показывает, что переход в анионную форму происходит при больших добавках щелочи по сравнению с водными растворами, следовательно, в водно-мицеллярных растворах протонодонорная способность $\mathbf{M}\mathbf{\Phi}$ в основном состоянии уменьшается. Низкий квантовый выход флуоресценции анионных форм ${\bf M}{\bf \Phi}$ и отсутствие изобестической точки в спектрах флуоресценции не позволили нам количественно оценить кислотно-основное равновесие в возбужденном состоянии и определить значение р K_a^* реакции диссоциации в мицеллярном растворе. Для оценки кислотно-основных свойств МФ в различных растворах ПАВ в возбужденном состоянии была построена зависимость Штерна-Фольмера, что отражает константы связывания реагента с мицеллами на основе измерения тушения флуоресценции. Получено, что в водномицеллярных растворах (ЦТАБ и ДДСН) константа тушения флуоресценции $\mathbf{M}\mathbf{\Phi}$ щелочью (NaOH) на два порядка выше, чем кислотой (H_2SO_4). Исключением являются растворы с добавками неионного ПАВ, в которых константа тушения флуоресценции как в кислых, так и в щелочных средах практически одинакова. Следовательно, подавляющая часть молекул $\mathbf{M}\mathbf{\Phi}$ как в основном, так и возбужденном электронных состояниях солюбилизирована мицеллами и не доступна для молекул добавок.

Влияние природы растворителя на спектральные характеристики 6-OH-ДГХ и 8-OH-ДГХ было изучено с использованием следующих растворителей: вода, метиловый (МеОН) и изопропиловый (PrⁱOH) спирты, гексан. Получено, что в спектрах поглощения при переходе от гексана к воде наблюдается гипсохромный сдвиг длинноволновой полосы, который тем больше, чем выше способность растворителя выступать донором протонов. У 8-OH-ДГХ этот сдвиг полос поглощения более значительный, чем у 6-OH-ДГХ. Спектры поглощения ДГХ в PrⁱOH по сравнению со спектрами поглощения в МеОН несколько сдвинуты в длинноволновую область, причем у 6-OH-ДГХ этот сдвиг более сильный и максимум полосы поглощения находится в более длинноволновой области, чем максимум полосы поглощения в гексане, что обусловлено влиянием полярности растворителя. Полученные данные свидетельствуют о том, что гипсохромный сдвиг полосы поглощения в воде и МеОН связан с образованием водородной связи с молекулой растворителя.

Анализ спектров эмиссии и возбуждения флуоресценции для изучаемых соединений в различных растворителях показал, что характер их изменения слабо зависит от структуры ДГХ и определяется протонодонорной способностью растворителя (табл. 2), а именно: минимальный Стоксов сдвиг наблюдали в гексане, а максимальный в воде. При этом в воде происходят наиболее сильные изменения как полосы эмиссии, так и возбуждения. Квантовый выход флуоресценции имеет максимальное значение в PrⁱOH, а минимальное в МеОН для обоих ДГХ. Инверсия в величине Стоксова сдвига в случае PrⁱOH и МеОН наблюдается для 8-ОН-ДГХ, а также уменьшение квантового выхода флуоресценции в воде. Можно полагать, что

это связано с возможностью образования внутримолекулярной водородной связи между близко расположенными фенильной группой ароматического кольца и аминной группой гетероцикла.

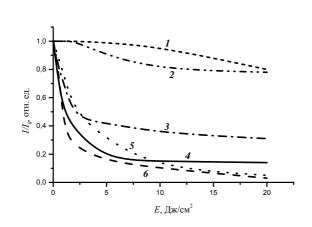
Таблица 2. Максимумы эмиссии и возбуждения флуоресценции и квантовые выходы флуоресценции 6- и 8-окси-2,2,4-триметил-1,2-дигидрохинолина в различных растворителях

вещество $C = 1 \cdot 10^{-4}$ моль/л	растворитель	эмиссия λ, нм	возбуждение λ, нм	Стоксов сдвиг E , см $^{-1}$	Фп
6-ОН-ДГХ	вода	456	345	7056	0.21
	Pr ⁱ OH	444	360	5255	0.29
	MeOH	447	360	5407	0.07
	гексан	428	364	4109	0.36
8-ОН-ДГХ	вода	442	334	7316	0.06
	Pr ⁱ OH	426	345	5512	0.17
	MeOH	422	349	4158	0.07
	гексан	405	349	3962	0.15

Таким образом установлено, что различия в спектральных характеристиках **6-ОН-ДГХ** и **8-ОН-ДГХ** в растворителях различной природы объясняются не только возможностью образования водородной связи с молекулами растворителя, но и образованием внутримолекулярной водородной связи в молекуле **8-ОН-ДГХ**.

В четвертой главе представлены результаты исследований фотолиза **2-МФ**, **4-МФ** и **2-А-4-МФ** в различных средах и при облучении разными источниками света.

При облучении как лампами, так и лазерами нейтральных водных растворов **2-МФ** и **4-МФ** в спектрах поглощения наблюдается слабое увеличение интенсивности поглощения по всему спектру, что говорит об образовании нескольких фотопродуктов. Более значительные изменения для **2-МФ** и **4-МФ** наблюдаются в спектрах флуоресценции: зафиксировано падение интенсивности основной полосы флуоресценции в области с максимумом 300-305 нм и появление новых полос, относящихся к полосе флуоресценции фотопродукта (табл. 3). Сходство фотопродуктов, полученных в разных средах при различных источниках света, свидетельствует о протекании идентичных фотохимических реакций.


Таблица 3. Спектрально-люминесцентные свойства 2-метилфенола ($C = 1 \cdot 10^{-4}$ моль/л) в воде после облучения

	, n		, ,	Источник облучения		Флуоресценция	
No	Раствор	pН	тип	рабочая молекула	λ, нм	λ ¹ , нм	λ^2 , HM
1	2-МФ	7.08		KrCl	222	350	-
2			KrCl	222	350 ⁶	410 ⁶	
3			лампа	XeBr	283	350	-
4				Hg	365 ^a	350	-
5				XeCl	308	365	410
6			d	XeCl	308	365 ^б	410 ⁶
7				KrCl	222	350	410
8				KrCl	222	350 ⁶	410 ⁶
9			лазер	4-я	266	-	410
			Ϊ́	гармоника Nd:YAG			
10	2-МФ	11.45	ľa	KrCl	222	-	410
11	+ 10 ⁻² M KOH		лампа	XeBr	283	-	410
12			ш	Hg	365 ^a	-	-
13	2-МФ	0.25	Ia	KrCl	222	-	-
14	+ 1 M H ₂ SO ₄		лампа	XeBr	283	-	410
15			31.6	Hg	365 ^a	-	-

 $^{^{}a}$ одна из наиболее интенсивных линий, диапазон излучения лампы находится в области 240-600 нм 6 относится к растворам, из которых удален растворенный кислород продувкой аргоном

Спектроскопический метод определения квантового выхода фотолиза, основанный на измерении интенсивности поглощения до и после облучения в максимуме полос поглощения исследуемых молекул, является непригодным в данном случае, поскольку зафиксирован рост интенсивности поглощения в этой области. Это связано с тем, что образующиеся фотопродукты поглощают в той же области, что и исходные соединения, а это затрудняет оценку квантового выхода фотопревращений. Поэтому эффективность фотопревращений **МФ**, а также влияние на эти процессы рН среды оценивалась по падению интенсивности флуоресценции **МФ** в максимуме полос (в области с максимумом 300-305 нм) до и после обучения. Получено, что независимо от источника излучения наиболее эффективный фотораспад **МФ** осуществляется в кислой и нейтральной средах, а наименее эффективный — в щелочной (рис. 4). Это объясняется тем, что в кислой среде сольватированные электроны, возникающие при фотолизе **МФ** в воде, реагируют с протонами с образованием атомов водорода. Последние реагируют с

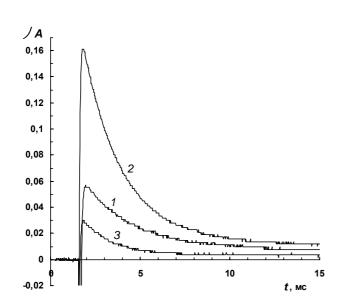
МФ с образованием циклогексадиенилового радикала HPhOH[•]. В щелочной среде данный процесс невозможен, что приводит к снижению эффективности фотолиза **МФ** с ростом рН. Реакции фотолиза метилфенолов в нейтральной и щелочной средах осуществляются с участием анионных форм. Согласно литературным данным, квантовые выходы реакций образования радикала HPhOH[•] и анионных форм метилфенолов выше при возбуждении в вышележащие синглетные состояния, т.к. увеличивается вероятность интеркомбинационной конверсии и перехода

молекулы в возбужденное триплетное состояние, которое принимает участие в реакциях фототрансформации метилфенолов.

Анализ эффективностей фоторазложения исследуемых **МФ** в нейтральной среде показал, что максимальный эффект достигается при облучении KrCl-лампой с длиной волны возбуждения 222 нм, что соответствует переходу $S_0 \rightarrow S_3$ (рис. 3). Согласно данным квантовохимического расчета, при возбуждении в S_3 состояние **МФ**

происходит наибольший перенос электронной плотности с группы ОН на фенильное кольцо молекулы, что способствует образованию анионных форм. В случае **2-МФ** и **4-МФ** S_2 и S_3 состояния расположены очень близко друг к другу и имеют различную природу: $\pi\sigma^*$ и $\pi\pi^*$, благодаря чему могут смешиваться и молекула перейдет в S_2 состояние, из которого выше не только вероятность образования аниона, но и переход в триплетное состояние, из которого возможно образование радикалов. Эффективность фотопревращений метилфенолов выше при облучении УФ-светом при возбуждении в коротковолновую область связан не только с большей эффективностью заселения фотодиссоциативного состояния $S_3 \rightarrow T_D$ (или S_D) но и с меньшей энергией активации фотореакции по сравнению, например, с фенолом. Количественная оценка эффективности фотопревращений

МФ в воде после облучения светом с длиной волны возбуждения 222 нм была проведена с использованием методики определения массовой концентрации суммы летучих фенолов фотометрическим методом после отгонки паром. Для **2-А-4-МФ** получена наибольшая конверсия, она составляет 97%. Для **2-МФ** и **4-МФ** конверсия равна 27 и 96% соответственно. Идентификация продуктов фотолиза проводилась хромато-масс-спектрометрическим методом после экстракции хлороформом. Для **2-А-4-МФ** удалось определить, что продуктами фотолиза являются вещества с молекулярной массой 133 и 195. Продуктом фотолиза **2-А-4-МФ** с молекулярной массой 133 является *3*-метилфенилизоцианат.

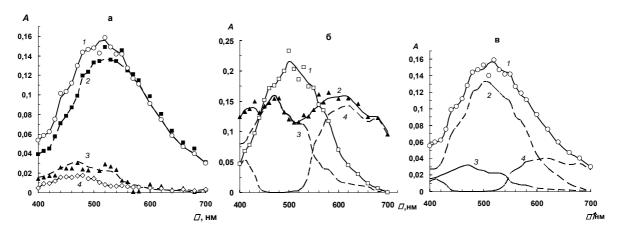

Таким образом, определены условия для эффективного фоторазложения **МФ** в воде при различном значении рH.

В пятой главе рассмотрен фотолиз 6-ОН-ДГХ и 8-ОН-ДГХ в растворителях различной природы. Анализ ЯМР 1 Н конечных продуктов фотолиза ДГ**X** в гексане, свидетельствует, что первичным фотопроцессом в апротонных растворителях является стадия образования аминильных радикалов в результате гомолитического разрыва связи N-H, которые исчезают в реакции рекомбинации. В PrⁱOH квантовый выход фотолиза ДГХ крайне низкий, однако образование продуктов фотолиза может быть зафиксировано по изменению спектров поглощения раствора. Исследование фотолиза гидроксипроизводных ДГХ в воде и МеОН показало, что в этих средах аналогично другим ДГХ происходит присоединение растворителя к двойной связи в соответствии с правилом Марковникова с образованием гидроксизамещенных 2,2,4-триметил-1,2,3,4соответствующих тетрагидрохинолинов. Однако введение гидроксигруппы в молекулу ДГХ оказывает влияние как на состав активных интермедиатов, так и конечных продуктов, что связано с повышенной кислотностью ОН-группы в возбужденном состоянии и возможностью образования внутримолекулярной водородной связи между близко расположенными аминной группой гетероцикла и фенильной группой ароматического кольца в случае 8-ОН-ДГХ. Из спектрофотометрических данных следует, что в случае 8-OH-ДГХ в нейтральных MeOH и H₂O происходит практически количественное превращение исходного дигидрохинолина образованием одного продукта присоединения по двойной связи. Фотолиз 6-ОН-ДΓХ MeOH приводит к преимущественному образованию

Схема 1

присоединения растворителя с СН₃ небольшой примесью побочных продуктов. В воде **6-ОН-ДГХ** вступает в темновые реакции в отсутствие кислорода воздуха с образованием 3-метилиндол-5-

ола, пятичленного гетероцикла (т. пл. 114–115 °C; масс-спектр, M/z (%): 147 (65), 146 (100), 118 (15), 117 (18); ЯМР ¹H, CDCl₃, δ м.д.: 7.78 (уш. с, 1H); 7.21 (дд, 1H, J = 8.5, J = 0.6 Γ ц), 6.99-6.96 (м, 2H), 6.78 (дд, 1H, J = 8.5, J = 2.4 Γ ц), 2.29 (д, 3H, J = 1 Γ ц) получающегося в результате реакции элиминирования группы $C(CH_3)_2$ группы


Рис. 5. Кривые спада поглощения после импульсного возбуждения молекулы 8-ОН-ДГХ в МеОН. Длина волны регистрации, нм: (1) 400, (2) 520 и (3) 700.

(схема 1). Эти реакции усиливаются под действием света, хотя и в этом случае происходит частичное присоединение растворителя правилу Марковникова. Исследование спектральнокинетических характеристик активных интермедиатов, образующихся при фотолизе ДГХ, проводили в метаноле методом импульсного Типичные кривые фотолиза. спада оптической плотности во времени на разных длинах

волн, наблюдаемые после импульсного возбуждения молекулы **8-ОН-ДГХ** в метаноле представлены на рис. 5. Эти кривые хорошо аппроксимируются двухэкспоненциальным уравнением 1, где A_1 и A_2 характеризуют спектры поглощения промежуточных частиц, образующихся в результате фотолиза и гибнущих с константами скорости k_1 и k_2 , а A_3 — спектр поглощения конечного продукта.

$$\Delta A = A_1 \exp(-k_1 t) + A_2 \exp(-k_2 t) + A_3 \tag{1}$$

Анализ всей совокупности кривых спада от 400 до 700 нм в соответствии с этим уравнением дал следующие значения констант скорости $k_1 = (540 \pm 50)$ с⁻¹ и $k_2 = (180 \pm 20)$ с⁻¹. Полученные спектры промежуточных частиц и поглощающего в видимой области продукта фотолиза представлены на рис. 6.

Рис. 6. Спектры поглощения, наблюдаемые при импульсном фотолизе 8-ОН-ДГХ после вспышки в метаноле (**a**, **b**) без добавок (*l*) и (**б**) в присутствии AcOH (*l*) и [NaOH] = 2 ммол· π^{-1} (*2*). (**a**) Рассчитанные по уравнению (1) промежуточные спектры, гибнущие с константами скорости, c^{-1} : (*2*) $k_1 = 540$ и (*3*) $k_1 = 180$ и (*4*) спектр конечного продукта. (**б**) Разложение спектра в присутствии NaOH на спектры поглощения (*3*) фенолят-иона и (*4*) цвиттер-иона *о*-хинометанимина. (**в**) Разложение спектра в МеОН на спектры поглощения (*2*) карбокатиона, (*3*) фенолят-иона и (*4*) цвиттер-иона *о*-хинометанимина.

Промежуточные частицы, образующиеся при фотолизе **8-ОН-ДГХ**, были идентифицированны на основании сопоставления спектрально-кинетических характеристик интермедиатов в нейтральных метанольных растворах и в присутствие кислоты (AcOH) и щелочи (NaOH). В обоих случаях гибель интермедиатов происходит по псевдопервому порядку с константами скорости 870 ± 50 и 90 ± 5 с⁻¹ соответственно. Спектр поглощения с $\lambda_{max} = 500$ нм близок к спектру карбокатионов других ДГХ (2, схема 2). Спектр поглощения с $\lambda_{max} = 600$ нм был отнесен к цвиттер-ионной форме хинометанимина (1), а при $\lambda_{max} = 470$ к фенолят-иону хинометанимина (3). Образование фенолят иона 3 происходит в нейтральной среде в результате реакции переноса протона от растворителя на атом

углерода C(3) возбужденного фенолят иона молекулы **ДГХ**, в щелочной среде вклад этого процесса возрастает, при этом подключается также процесс образования **3** вследствие кислотно-основного равновесия с цвиттер-ионом (K_2) .

Наблюдаемый спектр поглощения, возникающий при импульсном фотолизе **6-OH- ДГХ** в нейтральном растворе MeOH, принадлежит нескольким промежуточным частицам. Кинетические кривые спада поглощения на разных длинах волн от 400 до 600 нм хорошо аппроксимируются суммой трех экспонент согласно уравнению 2.

$$\Delta A = A_1 \exp(-k_1 t) + A_2 \exp(-k_2 t) + A_3 \exp(-k_3 t)$$
 (2)

Вычисленные в результате такой аппроксимации константы скорости k_1 , k_2 и k_3 равны 28 ± 2 , 78 ± 7 и 3.5 ± 0.5 с $^{-1}$ соответственно. Отнесение спектров промежуточных частиц было проведено из сопоставления результатов импульсного фотолиза в нейтральных метанольных растворах и в присутствие кислоты (AcOH) и щелочи (NaOH). Поглощение в области 430-440 нм отнесено к соответствующему o-хинометанимину 1. Промежуточная частица 2 образуется из 1 и имеет спектр, характерный для карбокатиона с $\lambda_{\text{max}} = 500$ нм. Частица с $\lambda_{\text{max}} = 480$ нм гибнет независимо от первых двух и была отнесена к фенолят-иону хинометанимина 3, который, как и в случае 8-OH-ДГХ, образуется из возбужденного фенолят-иона ДГХ и в щелочной среде в результате кислотно-основного равновесия из хинометанимина. Процессы, происходящие при фотовозбуждении ДГХ в нейтральном метаноле и метаноле, содержащем кислоту или щелочь, представлены на схемах 3 и 4.

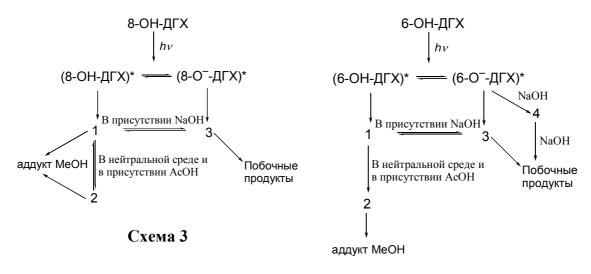


Схема 4

Схемы 3 и 4 позволяют объяснить увеличение количества побочных продуктов в водных растворах 6-ОН-ДГХ и 8-ОН-ДГХ, поскольку в этом случае равновесие между 1 и 3 осуществляется не только в присутствии щелочи, но и в нейтральных растворах. В отличие от 8-ОН-ДГХ в 6-ОН-ДГХ и образующихся при фотолизе интермедиатах невозможно образование внутримолекулярной водородной связи между ОН-группой и атомом азота, поэтому о-хинометанимин существует в своей канонической форме, и реакция его протонирования растворителем с образованием карбокатиона происходит достаточно медленно в мс временном диапазоне. Равновесие между 1 и 3 осуществляется в метаноле, так же как в случае 8-ОН-ДГХ, только в присутствии щелочи. Как показали эти исследования, увеличение кислотности фенильной группы в возбужденном состоянии в случае ДГХ приводят к увеличению образования побочных продуктов.

Выводы

- 1) Установлена взаимосвязь между эффективностью, направлением реакций фотолиза сложных органических молекул на примере метилфенолов и дигидрохинолинов и характеристиками воздействующего УФ-излучения и варьированием природы среды.
- 2) Возбуждение в коротковолновую область поглощения нейтральных водных растворов **2-метилфенола**, **4-метилфенола** и **2-амино-4-метилфенола** способствует максимальному разложению данных молекул. Увеличение или

- уменьшение pH среды (pH = 11.45 или pH = 0.25) вызывает изменение природы электронно-возбужденных состояний исследуемых молекул, и для их эффективного фотолиза необходимо возбуждение уже в длинноволновую область.
- 3) Установлено, что различие как спектрально-люминесцентных свойств, так и растворителях механизма фотолиза протонных изученных дигидрохинолинов обусловлено положением ОН-группы в молекуле и возможностью образования внутримолекулярных водородных связей в 8-окси-2,2,4-триметил-1,2-дигидрохинолина. 6-окси-2,2,4случае триметил-1,2-дигидрохинолина механизм фотолиза определяется увеличением кислотности гидроксильной группы в возбужденном S_1 состоянии, также как у метилфенолов.
- 4) Установлено, что у 6-окси-2,2,4-триметил-1,2-дигидрохинолина и 8-окси-2,2,4-триметил-1,2-дигидрохинолина в апротонных растворителях под действием света происходит гомолитический разрыв связи дигидрохинолина с образованием атома водорода и соответствующих аминильных радикалов, которые гибнут в реакциях димеризации и диспропорционирования.
- 5) Введение заместителей (CH₃, NH₂) в молекулу фенола приводит к увеличению протонодонорной способности в ряду **2-метилфенол** < **4-метилфенол** < **2-амино-4-метилфенола** в воде. При возбуждении **2-амино-4-метилфенол** обладает меньшей протоноакцепторной способностью вследствие делокализации электронной плотности.

Основное содержание диссертации опубликовано в работах:

- 1. Чайковская О.Н., Соколова Т.В., Соколова И.В. Спектрально-люминесцентные свойства нейтральных и ионных форм крезолов // Журн. прикл. спектр. -2005. Т. 72 № 2 -С. 165-170 (6/4.8).
- 2. Чайковская О.Н., Базыль О.К., Соколова Т.В., Соколова И.В. Влияние комплексообразования и энергии возбуждения на спектрально-люминесцентные свойства 2-амино-4-метилфенола // Известия ВУЗов. Физика. 2005. № 3. С. 71-76 (6/4.8).

- 3. Соколова Т.В., Некипелова Т.Д., Ходот Е.Н., Чайковская О.Н., Соколова И.В. Исследование спектрально-люминесцентных свойств 6- и 8-окси-2, 2, 4-триметил-1, 2-дигидрохинолинов в различных средах // Известия ВУЗов. Физика. -2005. -№ 6. Прилож. С. 102-103 (2/1.6).
- 4. Соколова Т.В., Чайковская О.Н., Авдохина Н.М., Соколова И.В. Исследование спектрально-люминесцентных свойств нейтральной и ионных форм метилфенолов в водно-мицеллярных растворах // Известия ВУЗов. Физика. 2005. Т. 48 № 11. С. 52-59 (8/6.4).
- 5. Соколова Т.В., Некипелова Т.Д., Левина И.И., Ходот Е.Н., Иванов Ю.А., Соколова И.В., Чайковская О.Н. Особенности фотолиза алкилированных окси-1,2-дигидрохинолинов в воде и метаноле // Хим. выс. энергий. − 2006. − № 1.-C.35-43 (9/7.2).
- 6. Соколова Т.В., Чайковская О.Н., Э.А. Соснин, Соколова И.В. Фотопревращения 2-метилфенола, 4-метилфенола и 2-амино-4-метилфенола в воде // Журн. прикл. спектр. 2006. Т. 73 № 5 С. 566-572 (7/5.6).
- 7. Sokolova T.V., Tchaikovskaya O.N., Sokolova I.V., Svetlichnyi V.A., Kopylova T.N. Phototransformation of cresols in water solutions with KrCl-laser excitation // Atmospheric and ocean optics. Atmospheric physics: In X Joint Internat. Symposium. Proseedings of SPIE. 2003. V. 5396. P. 174-178 (5/3.5).
- 8. Sokolova T.V., Sokolova I.V., Sosnin E.A., Tchaikovskaya O.N. Study of cresol phototransformations in neutral and acidic medium // Atomic and Molecular Pulced Lasers: In VI Internat. Conference. Proseedings of SPIE. 2003. –V. 5483. P. 152-156 (6/4.5).
- Sokolova T.V., Sokolova I.V., Sosnin E.A., Tchaikovskaya O.N. Fluorescence investigations of cresols photolysis // Methods and Applications of Fluorescence: Spectroscopy, Imaging and Probes: Book of abstracts of 8th Conf. 24-27 August 2003.

 Prague. P. 252 (1/0.5).
- Sokolova T.V., Sokolova I.V., Sosnin E.A., Tchaikovskaya O.N.Homogeneous light-induced degradation of methylphenols in the aqueos media // Chemical Reactors:
 Book of abstracts XVI Internat. Conf. 1-5 December 2003. Berlin. P. 412-413
 (2/1.5).

- 11. Sokolova T., Sokolova I., Sosnin E., Tchaikovskaya O., Vantskyavichute E. Photochemical transformation of methylphenols under different excitation // Photochemical conversion and storage of solar energy: Book of Abstracts of 15th Internat. Conf. 4-9 July, 2004. Paris. P. W1-P-19 (1/0.8).
- 12. Соколова Т.В., Чайковская О.Н., Майер Г.В., Соколова И.В., Светличный В.А., Копылова Т.Н., Соснин Э.А. Влияние замещения аминогруппой на фотопревращения 4-метилфенола при различном возбуждении // Прикладные аспекты химии высоких энергий: Тез. докл. 2 Всерос. конф. 26-28 октября 2004. Москва. С. 107-108 (2/1.6).
- 13. Nekipelova T.D., Sokolova T.V., Spectral and kinetic study on intermediate species generated in the photolysis of *6* and *8*-OH-*2*,*2*,*4*-trimethyl-*1*,*2*-dihydroquinolines, Book of Abstracts, ISRIUM-2005, August 7–12, 2005 Edinburgh, Scotland, UK. P. 63 (1/0.8).

Автор выражает благодарность научным руководителям к.ф.-м.н., доценту Чайковской О. Н. и д.ф.-м.н., проф. Соколовой И. В. за внимательное отношение и помощь в обсуждении работы, и д.х.н., вед.н.с. Некипеловой Т. Д. (ИБХФ РАН, г. Москва), под руководством которой проводились эксперименты по фотолизу дигидрохинолинов.

Отпечатано на участке оперативной полиграфии
Редакционно-издательского отдела ТГУ
Лицензия ПД № 00208 от 20 декабря 1999 г.
Заказ № ____ от «___» ____2006 г. Тираж 100 экз.