На правах рукописи

Богданов Олег Викторович

ОСОБЕННОСТИ ИЗЛУЧЕНИЯ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ ПРИ (111) ПЛОСКОСТНОМ КАНАЛИРОВАНИИ В ТОНКИХ КРИСТАЛЛАХ

Специальность 01.04.02 – теоретическая физика

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Томск – 2008

Работа выполнена на кафедре высшей математики и математической физики факультета естественных наук и математики Томского политехнического университета.

Научный руководитель:	профессор кафедры теоретической и экспериментальной физики Томского политехнического университета, доктор физико-математических наук Пивоваров Юрий Леонидович
Официальные оппоненты:	профессор кафедры теоретической физики Томского госу- дарственного университета, доктор физико-математических наук Бордовицын Владимир Александрович;
	проректор по международным связям Томского государ- ственного педагогического университета, доктор физи- ко-математических наук Эпп Владимир Яковлевич

Ведущая организация:	Институт сильноточной электроники	
	ТФ СО РАН (г. Томск)	

Защита состоится «20» ноября 2008 г. в « <u>14.30</u>» часов на заседании диссертационного совета Д 212. 267.07 в Томском государственном университете по адресу: 634050, г. Томск, пр. Ленина, 36

С диссертацией можно ознакомиться в научно-технической библиотеке Томского политехнического университета.

Автореферат разослан "___" 2008 года.

Ученый секретарь диссертационного совета, доктор физико-математических наук

И.В.Ивонин

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

1.1 Актуальность темы

Физика ориентационных эффектов, среди которых наиболее известным является каналирование заряженных частиц в кристаллах, представляет собой быстро развивающееся направление. Исследования в этой области интенсивно ведутся во многих научных лабораториях мира.

С помощью эффекта каналирования можно изучать тепловые колебания и смещения атомов в решетке, распределение электронной плотности в межатомном пространстве кристаллов. В последнее время изучается возможность использования каналирования для создания эффективных систем управления пучками частиц высоких энергий. Каналирование легких частиц – электронов и позитронов – может быть использовано для получения интенсивного монохроматичного рентгеновского и гамма-излучения.

Классическая и квантовая теория излучения релятивистских заряженных частиц при плоскостном каналировании в кристаллах изложена в монографиях [1–5]. Однако за бортом теоретических исследований остался случай излучения при плоскостном каналировании вдоль так называемых двойных плоскостей (111) в кристаллах со сложным базисом. Это связано со следующими причинами:

- потенциал системы двойных плоскостей сложен,
- аналитическое решение уравнения движения в таком потенциале найти невозможно.

Поэтому в работе выбран метод исследования спектрально-угловых характеристик излучения при каналировании релятивистских электронов и позитронов в кристаллах, основанный на численном решении уравнений движения и дальнейшем использовании найденных траекторий для построения спектров излучения.

В последнее время проведен ряд новых экспериментов по исследованию спектров излучения при плоскостном каналировании электронов в кристаллах^{*}, кроме того, планируются новые эксперименты на пучках релятивистских электронов и позитронов в LNF Frascati (Italy).

Это определяет актуальность и практическую значимость темы диссертации.

1.2 Цель работы

Цель диссертации состоит в том, чтобы провести теоретическое исследование спектрально-угловых характеристик излучения при плоскостном каналировании релятивистских электронов и позитронов в тонких кристаллах со сложным базисом.

^{*} H. Backe, P. Kunz, W. Lauth, A. Rueda. Planar channeling experiments with electrons at the 855 MeV Mainz Microtron MAMI // Nuclear Instruments & Methods in Physics Research B. –2008–V 266, issue 17.– P 3835-3851

Поставлены следующие задачи:

- Реализовать метод численного построения (пакет Mathematica 6.01) траекторий движения релятивистских электронов и позитронов для (100)- и (111)-каналирования в кристаллах Si и LiF с использованием непрерывных потенциалов плоскостей, рассчитанных с использованием аппроксимации электронного форм-фактора рассеяния типа Doyle-Turner [6].
- В рамках классической электродинамики на основе построенных траекторий исследовать спектрально-угловые характеристики излучения каналированных электронов и позитронов в тонких кристаллах Si и LiF.
- Провести усреднение по траекториям (по точкам влета в кристалл) и исследовать ориентационную зависимость формы спектра излучения релятивистских электронов и позитронов при (111)- и (100)-каналировании в кристаллах Si и LiF как функцию угла падения к плоскостям каналирования и энергии частиц от 100 до 2000 МэВ.
- Исследовать особенности спектров излучения при (100)- и (111)-каналировании релятивистских электронов и позитронов в тонком кристалле Si, когда в зависимости от точки и угла влета в кристалл частицы совершают небольшое число колебаний в плоскостном канале, причем не обязательно целое – эффект «хвостов» траекторий.

1.3 Научная новизна результатов

1. Впервые в рамках классической электродинамики, проведено систематическое исследование спектрально-угловых характеристик излучения релятивистских электронов и позитронов при (111)-плоскостном каналировании в тонких кристаллах Si и LiF на основе разработанного метода численного (пакет Mathematica 6.01) построения траекторий движения релятивистских электронов и позитронов в кристаллах.

2. Впервые исследована эволюция спектров излучения релятивистских электронов и позитронов в режиме плоскостного каналирования в системе двойных плоскостей в кристалле Si в зависимости от угла падения к плоскостям каналирования и увеличения энергии частиц от 100 до 2000 МэВ.

3. Впервые показано, что при расчете спектров излучения при (100)- и (111)-каналировании в тонких кристаллах Si принципиальным является учет влияния «хвостов» траекторий релятивистских электронов и позитронов на спектры излучения.

4. Впервые исследована эволюция спектров излучения релятивистских электронов и позитронов при (111)-плоскостном каналировании в ионном кристалле LiF в зависимости от угла падения к плоскостям каналирования и увеличении релятивистского фактора γ от 100 до 2000.

1.4 Научно-практическая ценность работы

Результаты, полученные в диссертации, используются при подготовке планирующихся экспериментов на пучках релятивистских электронов и позитронов LNF Frascati (Italy) с энергиями 20÷800 МэВ [6] в рамках коллаборации ТПУ – LNF и для интерпретации экспериментальных данных, полученных в 2007 г. на разрезном микротроне MAMI (Mainz, Germany).

1.5 Основные положения, выносимые на защиту

- 1. Сравнительный анализ формы спектров излучения релятивистских электронов и позитронов при (100)- и (111)-каналировании в кристалле Si. Показано, что при угле влета релятивистских электронов и позитронов к (111)-плоскостям каналирования, не превосходящем критического угла Линдхарда, форма спектра характеризуется двумя резко выраженными максимумами. Выход излучения релятивистских электронов и позитронов при (111)-каналировании более чем в 5 раз больше, чем при (100)-каналировании в кристаллах Si.
- 2. Эффект влияния «хвостов» траекторий релятивистских электронов и позитронов при (100)- и (111)- каналировании в тонком кристалле на форму спектра излучения при увеличении энергии частиц от 800 до 2000 МэВ. Установлено, что при фиксированной толщине кристалла эффект усиливается с увеличением энергии частиц и более выражен для позитронов по сравнению с электронами.
- Исследование эволюции формы спектров излучения электронов и позитронов при (111)-каналировании в ионном кристалле LiF при увеличении релятивистского фактора γ от 107 до 2000 и сравнительный анализ формы спектров излучения каналированных электронов, рассчитанных в рамках классической и квантовой электродинамики.

1.6 Достоверность научных результатов и выводов

Достоверность сформулированных в диссертации положений и выводов подтверждается качественным согласием полученных результатов (в предельных случаях) с результатами других авторов, а также сравнением с имеющимися экспериментальными данными. Тестирование в численных расчетах (Mathematica 6.01) проводилось стандартными методами.

1.7 Личный вклад соискателя

В работах, выполненных в соавторстве, соискатель принимал активное участие: в проведении расчетов, обработке и анализе результатов, в подготовке статей к публикации. Совместно с Пивоваровым Ю.Л. принимал участие в постановке задач. Все основные результаты диссертации получены лично автором.

1.8 Апробация работы

Результаты работы обсуждались на научных семинарах кафедр теоретической и экспериментальной физики и высшей математики и математической физики Томского политехнического университета, докладывались на следующих конференциях:

1. VII International Symposium "RREPS-07" Radiation from Relativistic Electrons in Periodic Structures September 24-29, 2007, Prague, Czech Republic.

2. XXXVII и XXXVIII Международная конференция по физике взаимодействия заряженных частиц с кристаллами, Москва: МГУ, май, 2007, 2008.

3. XXV International Conference on Photonic, Electronic, and Atomic Collisions, July 25 – 31, Freiburg, Germany, 2007.

4. XVI и XVII International Synchrotron Radiation Conference, Novosibirsk, Russia, 2006, 2008.

5. The 3rd International Conference on Charged and Neutral Particles Channeling Phenomena – Channeling 2008, October 25 – November 1, Erice (Trapani - Sicily), Italy, 2008.

1.9 Публикации. Основное содержание диссертации опубликовано в 6 статьях в рецензируемых журналах, 1 препринте LNF Frascati (Italy), а также в 10 тезисах докладов международных конференций.

1.10 Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и списка использованной литературы. Общий объем диссертации составляет 100 страниц, включая рисунки и список цитируемой литературы. Диссертация содержит 35 рисунков и 9 таблиц. Список литературы включает в себя 110 наименований.

2 ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснована актуальность темы диссертации, сформулированы основные цели работы, указана новизна результатов, приведена структура и содержание диссертации, перечислены защищаемые положения.

В первой главе введен механизм расчета спектров излучения каналированных релятивистских электронов и позитронов в кристалле.

В § 1.1 представлены результаты расчетов потенциалов, управляющих движением электронов и позитронов при плоскостном каналировании. Проводится сравнение потенциала типа «перевернутая парабола» [1] с потенциалом отдельной плоскости, аппроксимированным по типу Пешля – Теллера; потенциалом с аппроксимацией атомного формфактора рассеяния типа Doyle-Turner и более точной аппроксимацией, предложенной в работе [6]. Рассчитанные по методу [6] периодические потенциалы для (111)-плос-

костного каналирования электронов и позитронов в кристалле Si представлены на рис. 1 и 2.

Рис. 1. Потенциальная энергия электрона в системе двойных плоскостей (111) Si и три значения поперечной энергии, соответствующие трем типам движения (а); зависимость поперечной скорости $\beta_{\perp} = \dot{x}/c$ от времени для трех указанных значений поперечной энергии (b)

Рис. 2. Потенциальная энергия позитрона в системе двойных плоскостей (111) Si и три значения поперечной энергии, соответствующие трем типам движения (а); зависимость поперечной скорости $\beta_{\perp} = \dot{x}/c$ от времени для трех указанных значений поперечной энергии (b)

В § 1.2 описаны используемые методы расчета интенсивности излучения при плоскостном каналировании релятивистских от 100 до 2000 МэВ электронов и позитронов.

1) В случае тонких кристаллов (при пересечении кристалла количество поперечных колебаний в канале невелико) используется формула

$$\frac{d^{2}\varepsilon}{d\Omega d\omega} = \frac{e^{2}}{4\pi^{2}c} \left| \int_{0}^{\tau} \frac{\left[\mathbf{n} \left[(\mathbf{n} - \boldsymbol{\beta}) \dot{\boldsymbol{\beta}} \right] \right]}{\left(1 - \mathbf{n} \boldsymbol{\beta}\right)^{2}} e^{i(\omega t - \mathbf{k}\mathbf{r})} dt \right|^{2}.$$
(1)

здесь *c* – скорость света; *e* – заряд электрона, $\mathbf{r}(t) = \mathbf{\beta}_{\parallel} ct + \mathbf{r}_{\perp}(t)$ – радиус-вектор; $\mathbf{\beta} = \mathbf{r}/c$ – средняя скорость движения; $\mathbf{r}_{\perp}(t)$ – периодическая функция с периодом *T*, которая находится путем решения уравнения движения в поперечном к плоскостям направлении каналированных электронов и позитронов, $\mathbf{k} = \omega \mathbf{n}/c$ – волновой вектор; $t' = t + R/c - \mathbf{nr}(t)/c$; \mathbf{n} – единичный вектор, задающий направление вылета фотонов; τ – время пролета электрона/позитрона через кристалл. Эта формула используется далее в главе 2 при учете влияния «хвостов» траекторий релятивистских электронов и позитронов на форму спектра при (100) и (111) каналировании в тонком кристалле Si.

2) В случае большого количества поперечных колебаний в канале за время движения в кристалле используется формула

$$\frac{dW}{d\omega dz} = \frac{e^2 \omega}{c^4 T^2} \sum_{n=1}^{\infty} \Theta \left(1 - \frac{\omega T}{2 \pi n \gamma^2} \right) \left(1 - \frac{T \omega}{2 \pi \gamma^2 n} + \frac{1}{2} \left(\frac{T \omega}{2 \pi \gamma^2 n} \right)^2 \right) \left| v_{\tilde{\omega}}^T \right|^2, \qquad (2)$$
$$\tilde{\omega} = \frac{2 \pi n}{T}, \quad v_{\tilde{\omega}}^T = \int_0^T v_\perp(t) e^{i\tilde{\omega} t} dt.$$

где γ – релятивистский фактор, $v_{\tilde{\omega}}^{T}$ – Фурье-компонента скорости, T – период колебаний электрона (позитрона). Формула (2) также удобна тем, что представляет собой сумму по гармоникам и может использоваться для анализа парциальных вкладов отдельных гармоник в полный спектр излучения при каналировании электронов (позитронов).

Этот подход использован в гл. 3 для анализа спектров излучения в системе двойных плоскостей в кристалле Si (кристаллическая решетка типа алмаз) и в главе 4 – для анализа спектров излучения в ионном кристалле LiF (с кубической кристаллической решеткой).

В конце первой главы приводятся основные выводы.

Во второй главе впервые поставлена и решена проблема учета «хвостов» траекторий релятивистских электронов и позитронов при расчете спектров излучения при плоскостном каналировании в тонком кристалле. Исследовано спектрально-угловое излучение при каналировании электронов и позитронов в тонких кристаллах. Исследована эволюция спектров излучения в зависимости от энергии каналированных релятивистских электронов и позитронов и позитронов в тонких кристаллах. Исследована эволюция спектров излучения в зависимости от энергии каналированных релятивистских электронов и позитронов, а также от толщины кристаллической мишени *L* в диапазоне от 1 до 10 мкм.

В § 2.1 проведены расчеты спектров излучения для отдельных траекторий электронов и позитронов при увеличении энергии в диапазоне от 800 до 2000 МэВ. Указаны особенности в форме спектров излучения для каналированных релятивистских электронов и позитронов. Показано, что в отличие от излучения электронов основное излучение при (111)каналировании в кристалле Si позитронов приходится на первую гармонику.

В § 2.2 рассчитаны спектры излучения при (100) каналировании электронов и позитронов, усредненные по точкам влетав кристаллическую мишень для диапазона энергий от 800 до 2000 МэВ.

Все расчеты (рис. 3 и 4) выполнены как с учетом (кривые real), так и без учета (кривые ideal) «хвостов» траекторий релятивистских электронов и позитронов при плоскостном каналировании в кристалле. Численные расчеты показывают, что эффект влияния учета «хвостов» траекторий при каналировании релятивистских электронов позитронов в кри-

сталле при фиксированной толщине кристалла возрастает с увеличением энергии частиц. Показано, что эффект более выражен для позитронов, это связано с особенностью потенциала позитронов при (100)-каналировании.

В § 2.3 дано сравнение усредненных по точкам влета спектров релятивистских электронов и позитронов при (100)- и (111)-каналировании. На основе введенных относительной $\delta = 1 - \left\langle \frac{d\varepsilon_{ideal}}{d\Omega d\omega} \right\rangle / \left\langle \frac{d\varepsilon_{real}}{d\Omega d\omega} \right\rangle$ и интегральной $Y = \int (d\varepsilon/d\Omega d\omega) d\hbar\omega$ характеристик излучения

проводится сравнение формы спектра каналированных релятивистских электронов и позитронов с учетом (кривые real) и без учета (кривые ideal) «хвостов» траекторий для диапазона энергий от 800 до 2000 МэВ. Величины δ и *Y* оказываются больше для позитронов, что связано главным образом с ангармоничностью потенциальной энергии позитронов для высоких значений поперечной энергии.

В конце второй главы сформулированы основные результаты.

В § 2.4 рассмотрены особенности излучения «вперед» релятивистских электронов и позитронов при (111)-каналировании в кристалле Si. Показано, что при угле падения $\theta_0 = 0$ к (111) плоскостям каналирования спектры содержат два основных максимума, а также побочные максимумы, обусловленные вкладом гармоник более высокого порядка (рис. 4).

Рис. 3. Усредненное по точкам влета спектрально-угловое распределение излучения при (100)- но-угловое распределение излучения при (111)каналировании в кристалле Si, E = 2000 МэВ, L = 10 мкм: а) электронов, b) позитронов. L = 10 мкм: а) электронов, b) позитронов.

В третьей главе поставлена и решена задача расчета спектров излучения для (111)каналирования в тонком кристалле. Показаны особенности формы спектра излучения, возникающие при (111)-каналировании в сравнении с (100)-каналированием. Исследована эволюция спектров каналированных электронов и позитронов при увеличении энергии частиц от 100 до 800 МэВ и увеличении угла падения к плоскостям каналирования кристалла кремния.

В § 3.1 проведены расчеты спектральной интенсивности излучения каналированных электронов. Путем численного решения уравнения движения при (111)-каналировании электронов рассчитаны характерные траектории, возникающие при движении вблизи плоскостей каналирования. Для углов падения электрона к (111)плоскостям каналирования, превосходящих критический угол Линдхарда, указаны условия, при которых вместо двух (как при (100)- и (110)-каналировании) существуют три типа решений уравнения движения. Далее на основе полученных решений уравнения движения релятивистских электронов строятся спектры излучения при (111)-каналировании в зависимости от типа траектории.

Рис. 5. Спектр излучения каналированных электронов при угле влета в кристалл Si $\theta_0 = 0, 2\theta_c$ относительно плоскостей: a) (111); b) (100). Каждый спектр (total) представлен суммой трех компонент, соответствующих трем видам движения

Рис. 6 Спектр излучения каналированных электронов при угле влета в кристалл Si $\theta_0 = 0,7\theta_c$ относительно плоскостей: a) (111); b) (100). Каждый спектр (total) представлен суммой трех компонент, соответствующих трем видам движения

В § 3.1.1 исследована эволюция спектров излучения при изменении угла влета каналированных *e*⁻ с энергией 300 МэВ в кристалл относительно (100)- и (111)- плоскостей. Здесь рассматриваются усредненные по точкам влета в кристалл спек-

тры излучения каналированных релятивистских электронов. Расчеты проведены для диапазона углов от 0 до 1,5 θ_c .

Сравнение спектров излучения при (111) и (100) каналировании для углов влета в кристалл $\theta_0 = 0, 2\theta_c, \ \theta_0 = 0, 7\theta_c$ приведено на рис. 5 и 6.

Таблица 1

Тип траектории	Поперечная энергия	Период
cd	$-U_{_0} \leq \mathcal{E}_{_\perp} \leq -U_{_1}$	T_{cd}
си	$-U_{_{1}} \leq \varepsilon_{_{\perp}} \leq 0$	T _{cu}
пс	$0 \leq \mathcal{E}_{\perp}$	T_{nc}

Классификация типов движения (111)-каналированных электронов представлена в табл. 1. Тип движения *cd* будет существовать для диапазона углов падения $\theta_0 = 0 \div \theta_{sc}$, где

$$\theta_{\rm sc} = \sqrt{\frac{2\,\Delta U}{\epsilon}} = \sqrt{\frac{\Delta U}{U_0}} \theta_{\rm c} \,. \tag{3}$$

Здесь введен субкритический угол θ_{sc} , в случае (111) каналирования в кристалле Si $\theta_{sc} = 0,552 \theta_{c}$.

В § 3.1.2 исследована эволюция формы усредненных спектров излучения при увеличении энергии каналированных *e*⁻ для диапазона энергий от 500 до 700 МэВ.

Рис. 7. Спектр излучения каналированных позитронов при угле влета в кристалл Si $\theta_0 = 0, 2\theta_c$ относительно плоскостей:

a) (111); b) (100). Каждый спектр (total) представлен суммой трех компонент, соответствующим трем видам движения Рис. 8. Спектр излучения каналированных позитронов при угле влета в кристалл Si $\theta_0 = 0, 7 \theta_c$ относительно плоскостей:

a) (111); b) (100). Каждый спектр (total) представлен суммой трех компонент, соответствующим трем видам движения

В § 3.2 проведены расчеты спектральной интенсивности излучения каналированных позитронов. Путем численного решения уравнений движения для (111)-каналирования позитронов рассчитаны характерные траектории, возникающие при движении вблизи плоскостей каналирования. Для углов падения позитронов к (111)плоскостям каналирования, превосходящих критический угол Линдхарда, указаны условия, при которых вместо двух (как при (100)-каналировании) существуют три типа решений уравнения движения.

Далее на основе полученных решений уравнения движения релятивистских позитронов рассматривается формирование спектров излучения при (111)-каналировании в зависимости от типа траектории.

В § 3.2.1 исследована эволюция спектров излучения при изменении угла влета позитронов с энергией 300 МэВ в кристалл относительно (100)- и (111)-плоскостей. Исследуются усредненные по точкам влета в кристалл спектры излучения релятивистских позитронов при плоскостном каналировании в тонком кристалле. Расчеты проведены для диапазона углов влета от 0 до 1,5 θ_c

Сравнение спектров излучения при (111)- и (100)-каналировании релятивистских позитронов для углов влета относительно плоскостей $\theta_0 = 0, 2\theta_c$, $\theta_0 = 0, 7\theta_c$ приведено на рис. 7 и 8.

В § 3.2.2 исследована эволюция формы усредненных по точкам влета в кристалл спектров излучения при увеличении энергии e^+ от 500 до 700 МэВ при фиксированном угле влета в кристалл.

Классификация типов движения (111) каналированных релятивистских позитронов в кристалле Si представлена в табл. 2.

Таблица 2

Тип траектории	Поперечная энергия	Период
cd	$0 \le \varepsilon_{\perp} \le U_{0}$	T_{cd}
си	$U_{_1} \leq \varepsilon_{_\perp} \leq U_{_0}$	T _{cu}
пс	$U_{_0} \leq \mathcal{E}_{_\perp}$	T_{nc}

В § 3.3 проведено сравнение спектров излучения каналированных электронов и позитронов. Рассматривается эволюция спектрального диапазона излучения (область главного спектрального максимума) при увеличении энергии релятивистских электронов и позитронов 100 – 800 МэВ при плоскостном каналировании в кристалле Si. Также приведены расчеты полной интенсивности излучения *Y*, показывающие динамику *Y* для отдельных групп частиц по поперечной энергии.

В § 3.4 проводится сравнение экспериментальных данных [7] по спектрам излучения 900 МэВ электронов в кристалле Si с рассчитанными нами спектрами интенсивностей излучения при (111) плоскостном каналировании электронов.

В четвертой главе рассматриваются вопросы, связанные с излучением релятивистских электронов и позитронов при каналировании вдоль (111)-плоскостей в ионном кристалле LiF. Особенность задачи – в специфичном асимметричном потенциале на интервале периодичности.

В § 4.1 для характерных поперечных энергий моделируются траектории релятивистских электронов и позитронов при (111) – каналировании в кристалле LiF. Исследуется особенности спектра излучения для отдельных траекторий в зависимости от значения поперечной энергии.

В § 4.2.1 и § 4.2.2, как и в главе 3, исследуется эволюция усредненных по точкам влета спектров излучения релятивистских $\gamma = 2000$ электронов и позитронов при различных углах падения к (111)-плоскостям каналирования кристалла LiF. При угле падения $\theta_0 = 0$ все частицы попадают в канал и спектр представляет собой сумму вкладов групп частиц *си* и *сd* по поперечной энергии (рис. 9).

Рис. 9. Спектр излучения при (111)-каналировании релятивистских (γ = 2000) электронов (справа) и позитронов (слева) в кристалле LiF.

§ 4.3 для значений релятивистского фактора в диапазоне $\gamma = 107 \div 1000$ проводится сравнительный анализ формы спектров излучения каналированных электронов в тонком кристалле LiF, рассчитанных методами классической и квантовой электродинамики.

В заключении сформулированы основные результаты, полученные в диссертации.

3. Основные результаты и выводы

1. Разработан и реализован в виде пакета программ на языке аналитического программирования Mathematica 6.01 метод численного построения траекторий релятивистских электронов и позитронов при (111)-плоскостном каналировании в кристаллах со сложным базисом.

2. Исследовано формирование спектральной интенсивности излучения для так называемых двойных плоскостей ((111)-каналирование) в кристалле кремния. Показано, что в отличие от (100)-каналирования при (111)-каналировании вместо двух существует три группы частиц по поперечным энергиям, в результате вместо двух типов решений уравнения движения возникают три. Установлено, что в зависимости от соотношения между углом влета релятивистских электронов и

позитронов к (111)-плоскостям каналирования, углом Линдхарда и введенной новой величиной–субкритическим углом, форма спектра излучения будет содержать от одного до трех резко выраженных максимумов.

3. Впервые численными расчетами детально исследовано влияние «хвостов» траекторий релятивистских электронов и позитронов на форму спектра излучения при (100)- и (111)-каналировании в тонких кристаллах. Показано, что при фиксированной толщине кристаллической мишени 10 мкм и энергии частиц 2000 МэВ относительный вклад «хвостов» траекторий в спектр излучения при (100)-кана-лировании в кристалле Si вблизи основного максимума составляет 15% и 40%, а интегральный – 14.3% и 26.1% для электронов и позитронов соответственно.

4. Исследованы особенности спектральной интенсивности излучения каналированных электронов и позитронов вдоль (111)-плоскостей в ионном кристалле LiF, методами как классической, так и квантовой электродинамики. Показано, что даже при достаточно высоких энергиях электронов – вплоть до значений релятивистского фактора $\gamma = 1000$ – задача все еще остается квантовой.

4 Список использованной литературы

- 1. Байер В.Н., Катков В.М., Страховенко В.М. Электромагнитные процессы при высокой энергии в ориентированных монокристаллах. Новосибирск: Наука, 1989. 400 с.
- Ахиезер А.И., Шульга Н.Ф. Электродинамика высоких энергий в веществе. М.: Наука, 1993. – 344 с.
- 3. Кумахов М.А. Излучение каналированных электронов. М.: Энергоатомиздат, 1986. – 160 с.
- Базылев В. А., Жеваго Н. К. Излучение быстрых частиц в веществе и сильных полях. М.: Наука, 1987. – 272 с.
- 5. Теория излучения релятивистских частиц: Под ред. В.А. Бордовицина. М.: Физматлит, 2002. 576 с.
- Chouffani Kh. Ph. D Thesis. The Catholic University of America. Washington D.C. 1995. – P. 173
- 7. Адищев Ю.Н. Рентгеновское и гамма-излучение ультрарелятивистских электронов в кристаллах: Дис. ... док. физ.-мат. наук. М., 2004. 223 с.

5 Основные результаты диссертации опубликованы в следующих работах:

- Bogdanov O.V., Pivovarov Yu.L. Formation of spectral characteristics of channeling radiation from 800 – 2000 MeV electrons and positrons in the thin silicon crystal // Nuclear Instruments & Methods in Physics Research B. – 2008. – V. 266.– P. 3852-3857.
- Bogdanov O.V., Korotchenko K.B., Pivovarov Yu.L. Peculiarities of channeling radiation spectra from 100 to 800 MeV electrons and positrons in (111) Si crystal // Journal of Physics B: Atomic, Molecular and Optical Physics. –2008 – V. 41. 055004 – P. 1–8.
- 3. Богданов О.В., Коротченко К.Б., Пивоваров Ю.Л. Эволюция спектров излучения релятивистских позитронов при (100)- и (111)-каналировании в Si с изменением угла и энергии частиц // Известия Томского политехнического университета. – 2007. – Т. 311, № 2. – С. 62–65.
- 4. Богданов О.В., Коротченко К.Б., Пивоваров Ю.Л., Тухфатуллин Т.А. Рентгеновское и гамма-излучение релятивистских электронов при каналировании в кристалле LiF: переход от квантового к классическому описанию // Известия ВУЗов. Физика. 2007. Т. 50, № 10/2. С. 132-139.
- Bogdanov O.V., Korotchenko K.B., Pivovarov Yu.L., Tukhfatullin T.A. Channeling radiation from relativistic electrons in a thin LiF crystal: when is a classical description valid? // Nuclear Instruments & Methods in Physics Research B. 2008. V. 266. P. 3858-3862.
- 6. Богданов О.В., Коротченко К.Б., Пивоваров Ю.Л. Угловое распределение дифрагированного рентгеновского излучения при (111) каналировании электронов в Si: влияние зонной структуры энергетических уровней // Письма в ЖЭТФ. – 2007. – Т. 85, вып. 11. – С. 684-688
- Babaev A.A., Bogdanov O.V., Efremov V.I., Korotchenko K.B., Kunashenko Yu.P., Pivovarov Yu.L., Dabagov S.B. On crystal-assisted processes by means of 20–800 MeV e_/e+ LNF beams // Preprint LNF. – 2008, – LNF - 08 / 20(P).– P. 1-42.